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Abstract 

Glioma is known as the most common primary brain tumor occurring in adolescents and is 

considered as a lethal disease worldwide. Despite the advancements in presently available 

therapeutic approaches (i.e. radiation therapy and chemotherapy), the rate of amelioration in 

glioma patients is still low. In this regard, it seems that there is a need for reconsidering and 

enhancing current therapies and/or discovering novel therapeutic platforms. Chitosan is a natural 

polysaccharide with several beneficial characteristics, including biocompatibility, 

biodegradability, and low toxicity. Without causing toxic effects on healthy cells, chitosan 

nanoparticles are attractive targets in cancer therapy which lead to the sustained release and 

enhanced internalization of chemotherapeutic drugs as well as higher cytotoxicity for cancer 

cells. Hence, these properties turn it into a suitable candidate for the treatment of various cancers, 

including glioma. In the viewpoint of glioma, cancer inhibition is possible through targeting 

glioma-associated signaling pathways and molecules such as MMP-9, VEGF, TRAIL and 

nuclear factor-κB by chitosan and its derivatives. Moreover, it has been acknowledged that 

chitosan and its derivatives can be applied as a delivery system for carrying a diverse range of 

therapeutic agents to the tumor site. Besides the anti-glioma effects of chitosan and its 

derivatives, these molecules can be utilized for culturing glioma cancer cells; providing a better 

understanding of glioma pathogenesis. Furthermore, it is documented that 3D chitosan scaffolds 

are potential targets that offer advantageous drug screening platforms. Herein, we summarized 

the anti-glioma effects of chitosan and also its utilization as drug delivery systems in the 

treatment of glioma. 

Keywords: Chitosan, glioma, drug delivery, scaffold, cell culture 
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1. Glioma 

Annually, 27,000 new cases of malignant glial tumors and 1000 new cases of 

malignant ependymal tumors are diagnosed as glioma, according to Europe guidelines which are 

provided for the diagnosis, prognosis, and treatment of the most common adult brain tumors [1]. 

Indeed, one of the most life-threatening types of adult brain tumor is glioblastoma multiforme 

(GBM) which is accounted for about 80% of all primary malignant central nervous system 

(CNS) tumors [2, 3]. GBM and anaplastic glioma are the most frequent glial tumors, comprising 

more than 50% and 10% of the total glioma, respectively [4]. Several risk factors are related to 

the incidence of GBM. Among them, age is associated with a higher incidence and mortality rate 

in GBM. The average age of diagnosed patients is 64 years old [5]. Moreover, the incidence of 

GBM is lower in women compared to men [6]. 

 

While glioma is mainly the most frequent intrinsic CNS tumor, it inclines to develop metastatic 

forms and represents poor responses to chemotherapy and radiotherapy with undesirable 

outcomes [7]. Gliomas encompass two principal subgroups: Diffuse glioma is one of the 

subgroups of glioma that is defined by wide-ranging infiltrative growth into the surrounding 

parenchyma of CNS. Non-diffuse glioma is another subtype that shows a more circumscribed 

growth pattern that is characterized by pilocytic astrocytoma and ependymomas, which are rather 

common signs of this subgroup [8]. Despite the extensive efforts that have been made 

internationally in clinical oncology, treatment of GBM is still challenging [9-11]. At present, the 

mainstay of treatment for glioma is surgical resection followed by concurrent chemotherapy and 

radiotherapy. The treatment of patients with gliomas, particularly GBM, has been improved 

greatly through the mentioned treatments. However, the results of these treatments are not 
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promising. Common anticancer therapies may lead to drug resistance and subsequent recurrence 

or metastasis of cancer. The median survival time of patients diagnosed with GBM ranges from 

12 to 15 months; meanwhile, the 5-year survival rate has been less than 5% [12]. Therefore, new 

treating strategies are essential to combat glioma and improve the survival rates of patients who 

suffer from glioma. 

 

2. Risk factors of glioma  

Exposure to a high dose of ionizing radiation is the only confirmed risk factor of GBM up to now 

[13-15]. Radiation exposure accounted for more than 116 cases of GBM which have been 

reported since the 1960s. It has been estimated that the overall risk of developing GBM after 

radiation therapy is 2.5% [16]. Findings of experimental animal studies have shown that some 

pesticides and other agricultural chemicals, such as organochlorides and alkylureas combined 

with copper sulfates are capable of inducing cancer, as well. However, case-control and cohort 

studies of agricultural workers have reported equal negative or positive findings related to the 

risk for brain tumors [17]. A meta-analysis has shown that taking vitamin C may reduce the risk 

of glioma [18]. Few studies have shown that ovarian steroid hormones play a possible role in the 

development of GBM [19]. Also, it is reported that long-term consumption of hormonal 

contraceptives may lead to a higher risk of glioma [20]. Occupational risk factors, severe head 

injury, exposure to the pesticide, smoking, dietary risk factors, cell phones, and electromagnetic 

field are environmental factors that have no conclusive association with GBM [13, 15, 21-23]. 

However, studies indicated that average amounts of weekly exposure to carbon tetrachloride 

have been related to a higher risk of glioma in people who are occupationally exposed to it [24]. 

Nelson et al. also reported that occupational exposure to carbon tetrachloride and sugar intake 
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are two risk factors for the development of glioma [25]. Some investigations reported that 

diabetes mellitus is inversely associated with the risk of glioma [26-28]. Zhao et al. [29] also 

demonstrated that there is an association between diabetes mellitus and reduced risk of glioma. 

Besides, they reported that males and Caucasians with diabetes mellitus have a lower risk of 

glioma [29]. Based on some studies, the effect of infection and allergic diseases on GBM is 

possibly protective, which may due to the initiation of immune surveillance mechanism [14, 23]. 

A study has shown that the risk of developing glioma is reduced by 40% in people who suffer 

from allergies [30]. Also, gliomas are found to run in families but its susceptibility gene has not 

been identified yet [14]. Reports indicated that the incidence of some specific subtypes of glioma 

can be increased by inherited monogenic Mendelian syndromes such as Li–Fraumeni syndrome 

and Lynch syndrome, which are associated with GBM. Tuberous sclerosis, neurofibromatosis 

type 1 and type 2 are also related to multiple types of glioma including giant cell astrocytoma, 

astrocytoma, optic nerve glioma, and ependymoma. Furthermore, Ollier disease (Maffucci 

syndrome) and melanoma-neural system tumor syndrome have been reported to be involved in 

the incidence of all gliomas [31]. GBM shows a high degree of both genomic and spatial 

heterogeneity [32]. Changes in some genes are highly associated with GBM including RB1, 

TP53, NF1, PTEN, IDH1, EGFR, PIK3R1, and PIK3CA [33-35]. Additionally, patients with 

mutations in their L2HGDH gene, which leads to L-2-hydroxyglutaric aciduria, have been 

observed to have a higher incidence of brain tumors [32]. IDH1 mutation is observed to be 

present in several secondary GBM. Whereas, evidence expressed that it is not present in primary 

GBM.  Neomorphic enzymatic activity of IDH1 results in the generation of 2-hydroxyglutarate 

that is an oncometabolite. 2-hydroxyglutarate  production leads to some cell function alterations 

which relate it to epigenome and development of GBM [36]. Gene mutation is also able to alter 
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some signaling pathways such as dysregulation of growth factors, inactivation of Rb and p53, 

and activation of phosphoinositide 3-kinase; thereby, participate in GBM pathogenesis [32]. 

 

3. Chitin and its derivative 

Chitin, poly (β-(1–4)-poly-N-acetyl-D-glucosamine), is a biopolymer that is synthesized by 

several organisms [37]. After cellulose, it is the second most abundant polysaccharide that is 

widely distributed in nature. Chitin is the main structural compound in the cell wall of fungi and 

exoskeleton of crustaceans, such as crabs and shrimps. Chitin is found in nature as ordered 

microfibrils. Chitin is only usable in the field of biomedicine after converting to its derivatives, 

especially chitosan. [38]. Both chitin and chitosan are biocompatible, biodegradable, and non-

toxic biopolymers. Also, they have antimicrobial and hydrating effects. Furthermore, chitosan, 

along with other molecules, is used to culture cancer cells [39]. Because of these unique 

properties, chitosan has recently received considerable attention in the biomedical field  [40].  

 

4. Roles of chitosan in biological processes 

Chitosan has various biological benefits, including antimicrobial [41], anti-tumor [42], and 

immune-promoting activities. Studies have shown that chitosan can increase IL-2-mediated 

expansion of leukocytes in tumors and tumor-draining lymph nodes by 40% and 100%, 

respectively. Immuno-phenotyping studies demonstrated that chitosan co-formulation causes an 

increase in the IL-12-induced populations of important effectors, such as CD8+IFN-γ+ and NKT 

cells, in tumors and dendritic cell populations of the tumor-draining lymph nodes [42]. Chitin 

and chitosan oligosaccharides can regulate the inflammatory activities in macrophages [43]. 

Moreover, chitosan promotes dendritic cell maturation by inducing type I interferons (IFNs) and 
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enhances antigen-specific T helper 1 (Th1) responses in a type I IFN receptor-dependent manner 

[44]. In gingival fibroblasts, chitosan has shown an anti-inflammatory activity via reducing the 

production of prostaglandin E-2 (PGE-2) though downregulating the c-Jun N-terminal kinase 

(JNK) signaling pathway. Also, chitosan suppresses the adipogenesis in 3T3-L1 adipocytes. 

However, the effect of chitosan molecular weight on inflammatory activity is still questionable 

for researchers and some reverse effects have been observed [45]. 

 

5. Anti-tumor activities of chitosan 

Novel studies indicate that there are certain subpopulations of cancer cells in a tumor from which 

the tumor can originate. These cells, which are called cancer stem cells (CSCs ), have multiple 

similar characteristics to stem cells [46, 47]. These cells have been shown some features, 

including a higher ability of migration that is associated with invasion and metastasis [48]. 

Besides, they remain at a slow-cycling/quiescent state, which leads to resistance against anti-

proliferative drugs [49]. Some certain surface markers such as CD133, EpCAM, and CD44 can 

be used for CSC identification and isolation [50]. CSCs have the ability of self-renewal that 

provides maintenance of CSC pools as well as differentiation into heterogeneous progeny cancer 

cells [51]. Signaling cascades within CSCs, such as Notch, STAT3, and Wnt/β-catenin,  to are 

not regulated to maintain their stem cell properties [52]. Hence, targeting CSCs and some 

specific signaling pathways which are essential for tumor cells can provide novel and promising 

therapeutic strategies [55]. Chitosan cross-linked with other molecules is being used for culturing 

cancer cells [39, 56]. For instance, the CD133+ GBM CSC population may be enriched by 

porous chitosan-alginate scaffolds [57]. Also, breast cancer stemness may be increased by 

electrospun polycaprolactone-chitosan scaffolds [58]. However, the mechanisms of interactions 
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between cells and biomaterials are not yet well-known. Some investigations indicated that 

chitosan membranes and hyaluronan (HA) grafted chitosan (CSHA) membranes could increase 

the stemness of mesenchymal stem cells (MSCs) [59]. The main ligand of CD44 receptor that is 

aberrantly expressed on the surface of CSCs is HA [60]. Likely through the interaction of HA 

and CD44 receptor, CSHA membranes promote the aggressiveness of lung cancer cells. 

However, the influence of chitosan itself on some cancer cells remains to be elucidated [61]. In a 

recent study by Rao et al. it is demonstrated that chitosan nanoparticles could bind to CSCs via 

CD44 receptor, a major target gene of Wnt signaling [62, 63]. This finding indicated that the 

chemical properties of chitosan are somehow similar to HA.  

 

Chang et al. [64] recently demonstrated that chitosan itself enhances the CSC-related 

characteristics and tumor progression of not only CD44
positive

 colon cancer cells but also 

CD44
negative

 HCC cells. They observed that chitosan alone could increase cancer cell stemness 

properties and tumor progression. Meanwhile, they showed that chitosan and CSHA could 

induce diverse morphology in various cancer cells [64]. Several studies have been revealed that 

SW480 cells are not able to form spheroids and they fail to aggregate on chitosan and CSHA. 

HT29, DLD-1 and HCT116 are all CD44-positive cells which can aggregate on CSHA 

membranes [64-66]. Thus, chitosan as a suitable platform that has similar properties with ECM 

may be useful for studies concerning CSC biology as well as drug screening.  

 

6. Application of chitosan as a drug delivery system for glioma  

As we mentioned earlier, chitosan is a biodegradable and biocompatible agent which is used in 

the pharmaceutical industry. Within the past two decades, chitosan has been used for delivering 
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various therapeutic agents in nanoparticle forms [69]. There are several methods for preparing 

chitosan nanoparticles, such as emulsion solvent diffusion, nanoprecipitation, and emulsion 

cross-linking [69]. Utilization of nanomatrial-based drugs is associated with various advantages 

i.e., targeting drug to specific sites in the body, enhanced bioavailability by improving aqueous solubility, 

increasing resistance time in the body and passing the blood-brain barrier [70]. Recently, findings 

have shown that a combination of chitosan and nanotechnology may lead to overcoming the 

challenges we are currently facing in delivering drugs [70]. Herein, we take a look into recent 

studies concerning with chitosan-based drug delivery systems that are used for treating glioma.  

 

Chitosan-coated poly(lactide-co-glycolic acid) nanoparticles that are modified with polyethylene 

glycol and loaded with paclitaxel and R-flurbiprofen have shown efficient delivery of drugs to 

the tumor site. Moreover, these nanoparticles have higher cytotoxic effects against glioma due to 

the combination of anti-inflammatory and antitumor agents [71]. In C6 glioma cells, silibinin-

loaded chitosan nanoparticles provide sustained release of the drugs while increasing the 

expression levels of Bax and caspase3, two essential parts of apoptosis [72]. Turabee et al. [73] 

found that hydrogel of N, N, N trimethyl chitosan combined with pluronic F127 provides a 

sustained release of docetaxel. In GBM cells, this delivery method has a more effective killing 

ability than free docetaxel or docetaxel-loaded pluronic F127 [73]. Another study showed that 

chitosan coating changes the surface charge of core-shell polymeric nanoparticles to positive 

values, which enhances the nanoparticles internalization [74]. Besides, these nanoparticles that 

were loaded with docetaxel have shown higher cytotoxicity in comparison with docetaxel alone 

[74]. Poly-l-arginine-chitosan-triphosphate matrix nanoparticle loaded with doxorubicin and 

superparamagnetic iron oxide is a potential delivery system for diagnostic and therapeutic 
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purposes in GBM [75]. It is revealed that increasing the concentration of iron that is used in this 

method results in a decline in times of T2 relaxation of MRI [75]. Chitosan-capped gold 

nanoparticles have been shown to cause selective cytotoxicity for GBM stem cells without 

affecting normal cells [76]. Unlike uncoated nanoparticles, nanoparticles composed of chitosan 

exhibit a high accumulation in cells within the lysosomes and cytosol as well as near the nucleus 

[76]. Sharma et al. [77] designed a nanoformulation consisted of polyamidoamine dendrimer and 

chitosan for delivering temozolomide to GBM. They reported that this delivery method is more 

efficient than temozolomide alone since the concentration of the drug was doubled in the brain 

with this method [77]. Chitosan nanoparticles with an outer shell of 1,3β-Glucan have been used 

for delivering paclitaxel to malignant GBM [78]. Findings showed that this platform provides 

multiple benefits including improved drug bioavailability, overcoming systemic toxicity, 

decreasing hemolytic properties, and more cytotoxicity against glioma cancer cells [78]. 

 

7. Application of chitosan in culturing glioma cells to study the biology of these cells and 

develop therapies 

Despite the ability of patient-derived xenografts of GBM that provide a similar behavior as an in 

vivo tumor characteristic, these xenografts are reported to be costly and time-consuming [79]. In 

the other hand, testing potential anti-tumor agents require in vitro models which provide a 

suitable microenvironment for glioma [80]. Furthermore, pre-clinical studies of drug screening 

that use 2D culturing methods are not much effective in patients [81]. Chitosan is an excellent 

candidate biomaterial for designing scaffolds, which enhances tissue regeneration and tissue 

engineering [82].  
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It is reported that 3D chitosan-alginate scaffold can be used as a beneficial microenvironment for 

glioma since human glioma cells exhibit higher malignancy when they are cultured in chitosan-

alginate scaffolds [83]. This report showed that chitosan scaffolds, which have properties similar 

to the extracellular matrix, provide an environment for glioma cells to show a phenotype more 

similar to in vivo condition [83]. A study showed that culturing GBM cells on chitosan-

polycaprolactone polyblend nanofibers results in an upregulation of genes related to 

invasiveness, such as Twist, STAT3, Snail, β-catenin, and TGF-β [80]. Moreover, the cultured 

cells present the same migration profile as in vivo cells [80]. Chitosan and HA have been used 

for synthesizing a 3D scaffold [84]. While monolayer and flat epithelioid cells are grown in 2D 

adherent cultures, GBM cells have been observed to form ovoid cells clusters in the pores of 

chitosan-hyaluronic acid scaffolds [84]. Besides, cells that grow on these scaffolds indicated 

remarkable features, including higher expression levels of genes related to EMT, exhibiting an 

undifferentiated phenotype, and higher expression levels of genes related to hypoxia-induced 

oxidative stress [84]. It is found that chitosan and chitosan-hyaluronic acid scaffolds can form 

glioma cell spheroids [85]. Scaffold-grown cells present a higher expression of biomarkers 

associated with glioma stem cells in comparison with common 2D monolayers [85]. Noteworthy, 

cells that were cultured on chitosan-HA scaffold have a higher ability of tumorigenicity in vivo 

compared to 2D-cultured cells [85]. HIF-1α, Nestin, Musashi-1, GFAP, and CD44 which are 

stem-like characteristics of GBM cells have been observed to be upregulated in chitosan-HA 

scaffolds compared with 2D-cultured cells [81]. Besides, 3D-cultured cells showed higher 

resistance to chemotherapeutic drugs [81].  

 

8. Possible effects of chitosan on signaling pathways involved in glioma 
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Studies reported that some signaling pathways are involved in the pathogenesis and development 

of glioma. Chitosan has been observed to have a beneficial effect in the treatment of cancer cells 

via involving different signaling pathways [86-88]. Herein, we investigate the possible effects of 

chitosan on some signaling pathways that are involved in glioma. However, the exact roles of 

chitosan in glioma signaling pathways are remained to be elucidated.  

 

Various factors contribute to the regulation of signaling pathways and maintenance of GBM 

malignant cells such as increased metabolism rate and reactive oxygen species (ROS) [89]. ROS 

activates the transcription factor nuclear factor-κB (NF-κB). Subsequently, NF-κB activates the 

expression of genes involved in tumor growth and development [90]. Formation of amyloid β, 

which is induced by oxidative stress, and cytotoxicity are prevented by chitosan in NT2 neurons. 

This prevention occurs through two transcription factors: NF-κB and Nrf2. Hence, chitosan 

might be considered as an additional therapeutic strategy to combat neural demise in 

Alzheimer’s disease as well as other diseases that are associated with oxidative stress. Therefore, 

chitosan has the potential to be used for both preventing and treating diseases of CNS [91]. 

Interestingly, inhibiting the NF-KB reduces matrix metalloproteinase-2 (MMP-2) and MMP-9 

expression [90]. MMPs are enzymes that have various roles in the destruction of the extracellular 

matrix and serve as important factors in physiological and malignant processes [92]. Based on 

the evidence, the upregulation of MMP expression is a critical cause of tumor growth and 

inhibition of anti-tumor processes [93]. Current studies approved the nutraceutical value of two 

water-soluble derivatives of chitosan and chitin, carboxymethyl-chitosan and carboxymethyl-

chitin. These derivatives serve as potent antioxidants and MMP inhibitor; leading to the 

alleviations of radical-induced oxidative damage [94]. Chitosan polymer has also been used for 
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delivering a bioactive compound with neuroprotective effects, eugenol, to glioma cells. Findings 

showed that eugenol-loaded chitosan is capable of the inhibiting protein expression of NF-κB as 

well as reducing MMP-9 and urokinase-type plasminogen activator. Moreover, this nanopolymer 

significantly decreased the expression of VEGF [95]. Human tumor necrosis factor α‐ related 

apoptosis‐ inducing ligand (TRAIL) is one of the TNF cytokine superfamily members. TRAIL 

forms a homotrimer that crosslinks death receptors on the cell surface; resulting in downstream 

signaling of apoptosis [96, 97]. While the majority of GBM express death receptors [98], studies 

have shown that TRAIL can be a potential target for glioma treatment [99]. Wang et al. [100] 

designed an iron oxide nanoparticle coated with chitosan–polyethylene glycol–

polyethyleneimine copolymer and chlorotoxin to provide a delivery system of plasmid DNA 

encoding TRAIL into GBM. They observed that TRAIL was successfully delivered into human 

T98G GBM cells. The results suggested that this drug delivery system is a potential candidate to 

combat against GBM [100]. 

 

9. Conclusions 

Considering statistics, the high rate of mortality, and the low life quality of glioma patients, it 

seems that common therapies are not satisfying enough. Besides, there are several challenges in 

the study of the glioma cells as well as developing new therapies for this cancer. Chitosan, which 

has been used against various cancers, has recently attracted the attention of glioma-related 

researches. Chitosan nanoparticles have been suggested to have anti-tumor characteristics against 

glioma cells as evidenced by their effects on several signaling pathways and molecules. A 

variety of glioma chemotherapeutic drugs has been loaded into chitosan nanoparticles. These 

nanoparticles are reported to be more effective than pure therapeutic drugs due to multiple 
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features, including the sustained release of the drug, enhanced internalization of the drug, and 

higher cytotoxicity on cancer cells. Since 2D-cultured cells have different characteristics from 

the cells grown in vivo, this culturing method is not much effective for screening drugs. Findings 

demonstrate that 3D chitosan scaffolds are potential targets for providing a drug screening 

platform (Fig.1). Moreover, culturing glioma cells on chitosan-based scaffolds leads to a better 

understanding of glioma stem cell biology. Altogether, we believe chitosan is a promising agent 

that can be used as a sufficient drug delivery system for treatment of glioma as well as 

circumventing obstacles existing in the studying of the glioma cells and drug screening.  
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Legend to Figure: 

 

Figure 1. Schematic representation of chitosan applications for culturing glioma cells and drugs 

delivery. (A) Studies reported that 3D chitosan scaffolds are more effective for culturing glioma 

cells compared to 2D monolayer cultures. These scaffolds provide a platform for drug screening 

and studying the biology of glioma cells. (B) Findings suggest that chitosan nanoparticles are 

potential targets for delivering glioma therapeutic drugs. 
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